报告题目:Graph machine learning
报告人:Prof. Ilya Makarov (HSE University)
报告时间:2022年4月27日下午3:00~4:30
报告地点:Zoom会议(会议号:961 7256 9989 密码:123456)
报告内容简介:Many systems in the real world can be modeled as graphs or networks. One of the main goals of graph modeling is to formulate a general technique able to process structural data including relations between objects, which may also have some domain-specific information. In this talk, we deal with network representation learning, aiming to automatically learn low-dimensional vector features for the simplest graph motifs, such as nodes and edges. We search for a way that would efficiently solve machine learning problems on graphs, which include node classification, link prediction, node clustering, and graph visualization. Reference: https://peerj.com/articles/cs-357/
报告人简介:Ilya Makarov(伊利亚·马卡罗夫),1989年7月,俄罗斯国立高等经济大学(HSE University),数据分析与人工智能学院,高级讲师;人工智能研究所,高级研究员。作为人工智能教育者、HSE研究员、MIPT(莫斯科物理技术学院)研究员、MISIS(密西斯大学)研究员以及莫斯科三星和华为研发部门的顾问工作了近10年。